
730 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 3, MARCH 2007

Principal Component Analysis of Remote
Sensing of Aerosols Over Oceans

Viktor Zubko, Yoram J. Kaufman, Richard I. Burg, and J. Vanderlei Martins

Abstract—We apply principal component analysis (PCA) to
estimate how much information about atmospheric aerosols could
be retrieved from solar-reflected radiances observed over oceans
by a satellite sensor as a function of the number of wavelength
bands, viewing angles, and Stokes parameters. It is assumed that
our virtual satellite sensor can simultaneously perform multi-
spectral, multiangle, and linear polarization measurements of the
radiances, and the following quantities are used to vary: aerosol
optical thickness, single-scattering albedo (SSA) of aerosol par-
ticles, height of the aerosol layer, aerosol model (includes size
distribution parameters and optical properties), and wind speed.
The real refractive index was kept constant and, therefore, is
not part of the analysis. To calculate the number of significant
principal components (SPCs), the cumulative percent variance
rule is used, which takes into account anticipated errors of mea-
surements. The reported results predict how much additional
information can be retrieved from observations by adding more
wavelength, angle, and polarization channels. For example, for
the Moderate Resolution Imaging Spectroradiometer instruments
(λ > 0.5 µm), the number of SPCs is two to three; for Multiangle
Imaging SpectroRadiometer, three to five; for Polarization and
Directionality of the Earth Reflectances, five to ten; while for the
future Glory/Aerosol Polarization Sensor instrument, it is 6–11
(when using eight out of its > 100 view angles). The ranges
reflect view conditions and analysis method. Our calculations
show that the observations should be most sensitive to the aerosol
model followed in decreasing order by optical thickness, SSA, and
aerosol height. We found that there is no systematic increase in
the information about aerosol starting from 10–15 view angles for
unpolarized observations and 30 view angles for those with linear
polarization. It is achievable with modern detectors to retrieve up
to 10 and 16 SPCs from unpolarized and polarized observations,
respectively. The methodology and results of our PCA can be
useful for estimating the reliability of aerosol parameters retrieved
from existing and future satellite observations.

Index Terms—Aerosols, remote sensing, satellite applications.

I. INTRODUCTION

A TMOSPHERIC aerosols interact with the Earth radiation
and hydrological cycles and play an important biogeo-
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chemical role in the Earth system [1], [2]. Aerosols are liquid
and solid particles suspended in the air from natural or man-
made sources. They can affect human health, visibility, and
climate. Aerosol particles affect climate directly by reflecting
and absorbing solar and terrestrial radiation, and indirectly by
their influence on cloud microphysics, albedo, and precipitation
[3]–[5]. Modeling of aerosol effects shows that aerosols, via
scattering solar radiation and interfering with cloud processes,
should increase reflection of radiation back to space, thus hav-
ing a cooling effect on the climate [6]–[8]. However, aerosols
that contain black carbon particles strongly absorb the incoming
sunlight. The aerosol absorption can result in the warming of
the atmosphere and cooling of the surface, with subsequent
reduction of the atmospheric vertical temperature gradient that,
in turn, could influence the rates of evaporation and cloud
development [9]–[11]. Accurate knowledge of the interplay of
the radiative effects of aerosol and greenhouse gases is needed
in order to measure the sensitivity of the Earth to radiative
forcing and to predict climate change [12].

Aerosols have a short lifetime (of 7–10 days) and, therefore,
have high spatial and temporal variability. Their interaction
with solar radiation and clouds is controlled by their intrinsic
properties. Therefore, to quantify the aerosol effect on climate,
accurate spatial and temporal distributions of aerosol properties
(composition, particle size distribution, and optical thickness,
just to name a few) measured on a global scale are needed [13].
This objective can be achieved by using long-term satellites
capable of sensing solar-scattered radiation for a wide range
of wavelengths and viewing angles and for various polarization
states, in combination with surface and aircraft measurements.
Because of the vector nature of light, it is characterized by
the intensity and state of polarization, which are common to
express through the Stokes vector with the components, Stokes
parameters: I , Q, U , and V [14]. The first, I , describes the
total (polarized and unpolarized) radiance. The next two Stokes
parameters, Q and U , describe the linearly polarized radiance,
and the last, V , is the radiance circularly polarized. Currently
flying satellite instruments measure only part of the information
available in the reflected sunlight. For example, Polarization
and Directionality of the Earth Reflectances (POLDER) [15]
measures three Stokes parameters I , Q, and U for up to 14
viewing angles, but only in three wavelength bands centered at
0.443, 0.67, and 0.865 µm. The Moderate Resolution Imaging
Spectroradiometer (MODIS) [16] measures radiances in seven
wavelength bands spanning the range from 0.47–2.13 µm, but
without polarization and for one viewing angle at a time. The
Multiangle Imaging SpectroRadiometer (MISR) [17] measures
reflected radiances in four wavelength bands ranging from
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0.44–0.86 µm for nine view angles (except exactly at the solar
equator) and without polarization.

From future missions, Glory will be a remote-sensing Earth-
orbiting observatory, whose main objective is to collect data
on various physical and chemical properties, and spatial and
temporal distributions of aerosols. The objective will be ac-
complished with the Glory/Aerosol Polarization Sensor (APS),
which will measure three Stokes parameters I , Q, and U
with a continuous scan with over 100 view angles and nine
wavelengths bands (0.4–2.4 µm) [13].

A sensitivity analysis regarding polarization measurements
was already reported by Mishchenko and Travis [18]–[20].
They show that remote-sensing algorithms, based on high-
precision multiangle measurements of polarization and radi-
ance at one or several wavelengths, are less dependent on
a priori information about the aerosol than algorithms using
radiance measurements alone. As a result, the polarization mea-
surements can be used to retrieve the aerosol optical thickness
(AOT), effective radius, and refractive index with very high
accuracy of ±0.015, ±0.03 µm, and ±0.01, respectively.

Thus, the purpose of this paper is to analyze how much
information about atmospheric aerosols could be retrieved from
solar reflected radiances observed by a satellite sensor as a
function of the number of wavelength bands, viewing angles,
and Stokes parameters. For this purpose, we use the principal
component analysis (PCA), which is a well-known multivariate
technique [21]. The results presented here can be useful in
designing aerosol retrieval algorithms for upcoming cosmic
missions devoted to aerosols. For example, the estimated num-
ber of SPCs could be used in defining the reliability weights for
aerosol parameters to be retrieved. It would allow one to fine-
tune the retrieval scheme: to put more attention to more reliable
parameters and isolate those parameters with low reliability or
not retrievable.

A signal detected by a satellite sensor contains responses
of aerosol, atmospheric molecules (Rayleigh scattering), and
underlying surface. Therefore, to separate the contribution of
aerosol, we should be able to properly model the other con-
tributors. As a rule, Rayleigh scattering can be predicted quite
accurately. The contribution of the surface is different for the
ocean and land. Because land surface has quite complex and
variable reflectance properties [22], it is difficult to model its
contribution at a global scale. In contrast, the ocean surface
albedo is relatively low and constant [23], and this should
simplify the modeling process. Therefore, the work reported in
this paper has been carried out for oceans only.

It is worth noting that Tanré et al. [24] already used the PCA
to estimate the information on aerosol parameters contained
in the reflected solar radiances detected over oceans in the
0.53–2.2-µm range. The authors found that only one to two
parameters of the size distribution could be retrieved. The
computations were performed for the MODIS spectral bands
with one viewing angle. Two parameters of a lognormal size
distribution, the effective radius and width of the distribution,
were identified as the key variables. Here, we are expanding
the analysis of the study in [24], that is, we use the vector
radiative transfer calculations for the system of atmosphere
(aerosol and molecules) and ocean to get the radiances for a

TABLE I
AEROSOL MODEL PARAMETERS

number of viewing directions, wavelengths, and polarization
states suitable for aerosol space sensors. We also use a broader
set of aerosol-related quantities as variables, such as particle
size distribution and optical parameters, optical thickness of
the aerosol layer, single-scattering albedo (SSA) of aerosol
particles, height of the aerosol layer, and wind speed.

Our modeling approach is described in Section II, the results
can be found in Section III, and Section IV concludes the paper.

II. MODELING APPROACH

To proceed with modeling, we should first define the main
aerosol parameters and a set of their values for variation,
together with the scattering properties of the atmosphere and
ocean. At the next step, we calculate a lookup table of the top-
of-atmosphere reflectances for the set of predefined parameters.
Finally, we perform the PCA of the reflectances and find the
number of SPCs. Below, we describe all these topics in detail.

A. Aerosol Parameters

The following aerosol parameters were used as variables in
our PCA.

1) SSA is a ratio of aerosol scattering coefficient to the total
aerosol extinction (scattering + absorption) coefficient.
We did calculations for the several values of SSA from
0.75 to 1 (Table I).

2) AOT is an index of the attenuation of radiation as it passes
through the atmosphere, due to the presence of suspended
aerosol particles. Usually, it defines at the wavelength at
or around 0.55 µm. We did calculations for several values
of AOT between 0 and 0.5 (Table I).

3) Aerosol layer height. We assume that the aerosol layer has
the vertical size of 1 km and the layer base height varies
between 0 and 3 km (Table I).

4) Aerosol size distribution model. We base our PCA cal-
culations on six various aerosol particle size distribution
models (Tables I and II) from which models 1–4 corre-
spond to the fine mode (small particles) and models 8–9
correspond to the coarse mode (big particles). The model
running numbers correspond to the respective models
from the study in [25] used for MODIS aerosol retrievals.
We assume that each model obeys a lognormal size
distribution

n(R) =
N

2.3Rσg

√
2π

exp

{
− (log R − log Rg)

2

2σ2
g

}
(1)

where N is the total particle number density, Rg is the
median radius, and σg is the standard deviation of log R.
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TABLE II
AEROSOL MODEL OPTICAL PROPERTIES. Rg , Reff , AND σg ARE THE MEDIAN RADIUS, THE EFFECTIVE RADIUS, AND THE STANDARD DEVIATION

OF LOGARITHM OF THE PARTICLE RADIUS FOR A LOGNORMAL SIZE DISTRIBUTION. ωo IS THE SSA. MODELS 1–2 ARE WET

WATER SOLUBLE TYPE. MODELS 3–4 ARE WATER SOLUBLE WITH HUMIDITY, AND MODELS 8–9 ARE DUSTLIKE TYPE

The parameters Rg and σg of the models are presented in
Table II. We further assume that each of the six models
can have submodels corresponding to several values of
the SSA from 0.75 to 1 (Table I). The optical constants
for each aerosol model and SSA are presented in Table II.

Note, however, that our analysis does not include the non-
sphericity of aerosols, which could increase the uncertainty
of our PCA results for models of dustlike particles [26]. In
addition, due to our choice of the optical model of aerosols,
we do not use refractive index as a directly varied parameter.
Instead, the refractive index is incorporated into the parameter
called aerosol model.

B. Simulated Top-of-Atmosphere Reflectances

We calculated the top-of-atmosphere reflectances at eight
wavelengths spanning the range 0.34–2.119 µm: six from
them (0.533–2.119 µm) approximately correspond to respective
MODIS bands [15]. We added two more wavelengths into
our analysis: in blue (0.411 µm) and ultraviolet (0.34 µm) in
order to estimate how much information about aerosols this can
provide.

The top-of-atmosphere reflectances for the lookup table were
computed for the above set of aerosol parameters and for an
array of angles using the radiative transfer code of Ahmad and
Fraser [27]. It fully suits our needs: 1) includes the polarization
effects; 2) takes into account light scattering by molecules
(Rayleigh scattering) and aerosol particles; and 3) considers
reflection of light by the ocean surface. The ocean reflection
has several contributors such as the Fresnel reflection by the

rough ocean (Sun glitter) [28], reflection by foam [29], and
the Lambertian reflection by underwater scattering elements
(sediments, pigments, etc.). For simplicity, we assumed zero
water leaving radiance. Typically, its contribution to the total
observed radiance is at most 10% in blue, and less than 5%
in green [30]. Because we work in this paper on the aerosol
reflectance (see this section below), a difference between the
reflectances from the same scene with and without aerosol,
we therefore expect that the error in the aerosol reflectance
due to the assumption of zero water leaving radiance should
not be large. We reserved up to 5% for the error in our PCA
(see Section II-D below). The percentage of the ocean surface
occupied by foam depends on the wind speed [29]. For the
lookup table, reflectances were calculated for several values of
the wind speed from 2–8 m s−1 (Table I).

Therefore, the top-of-atmosphere reflectance is a function
of a number of parameters: ρ(λ, ipol, θin, θout,Φout;m,H,
ωo, τ, ν), where parameters of the first group characterize con-
ditions of observations and parameters of the second group
describe the aerosol properties: λ is the wavelength, ipol is
the index of the respective Stokes parameter (ipol = 1–4 for I ,
Q, U , and V , respectively), θin is the solar zenith angle, θout

is the view zenith angle, Φout is the view azimuth angle, m
is the index of the aerosol size distribution model, H is the
aerosol layer height, ωo is the SSA, τ is the aerosol layer optical
thickness, and ν is the over-ocean wind speed. To scale down
the contributions of the atmosphere and ocean reflection while
doing PCA, we used the aerosol reflectance instead of original
reflectance: ∆ρ(τ) = ρ(τ) − ρ(τ = 0), that is a difference of
the reflectances corresponding to the cases of with and without
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Fig. 1. Typical aerosol reflectances as a function of (a) aerosol layer height, (b) SSA, (c) AOT, (d) aerosol model number, and (e) wind speed.

aerosol. Typical dependences of aerosol reflectances on various
aerosol parameters are shown in Fig. 1.

C. Basics of the PCA

PCA is a multivariate technique that allows us to reduce an
original set of correlated observed variables into a smaller set
of uncorrelated rather artificial variables called principal com-

ponents (PCs), each of which is a particular linear combination
of the original variables [21]. Thus, the purpose of PCA is to
achieve parsimony and reduce dimensionality by finding the
smallest number of components that explain most of the vari-
ation in the original data and to summarize the data with little
loss of information. The PCs are extracted in decreasing order
of importance so that the first PC accounts for as much of the
variation as possible and each successive component accounts
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for a little less. To restore the total system variability of the orig-
inal variables, we need all PCs. However, if the first few PCs ex-
plain a large proportion of the variability (usually 90%–95%),
our purpose of dimension reduction has been achieved. Because
PCA is just a mathematical technique, the interpretation of PCs
is neither easy nor straightforward, in general [31].

Note the limitation of the PCA. The technique is linear;
therefore, any nonlinear correlation between variables will
not be captured. However, generally, the dependences of our
aerosol reflectances on aerosol parameters do not deviate much
from linear ones (see Fig. 1). Thus, we think that the influence
of the nonlinearities on our PCA results is small. To get a
quantitative measure of the influence, a nonlinear approach,
for example, nonlinear PCA on the base of the neural network
models [32] or independent component analysis [33], should be
used, but this is beyond the scope of this paper.

The following is a detailed description of the algorithm we
used for the PCA of the aerosol reflectances.

Step 1) Organize the input data, top-of-atmosphere re-
flectances ρ, into a matrix D0 with the number of
columns no and with the number of rows na. Num-
ber no corresponds to the number of observational
data that is equal to nλ · nθ · ns, where nλ is the
number of wavelengths, nθ is the number of viewing
directions, and ns is the number of Stokes parame-
ters (ns = 1 for observations without polarization
and ns = 3 with linear polarization). Number na

corresponds to the number of aerosol models that
is equal to nH · nω · nτ · nm · nν , where nH is the
number of aerosol layer heights, nω is the number of
SSAs, nτ is the number of AOTs, nm is the number
of aerosol particle size distributions, and nν is the
number of wind speeds. Therefore, the total number
of matrix elements is no · na, and the relation na ≥
no should hold for PCA to work.

Step 2) Form a matrix D1 with aerosol reflectances ∆ρ as
D1 = D0 − Dτ=0, where matrix Dτ=0 is similar to
D0 except that all matrix elements are calculated for
τ = 0; that is for the case of no aerosol.

Step 3) Standardize matrix D1: Find the mean value D1,〈i〉j
and the standard deviation σ1,〈i〉j along each column
i of D1; then form a matrix D2 : D2,ij = (D1,ij −
D1,〈i〉j)/σ1,〈i〉j which has zero mean and unit stan-
dard deviation for each column; this is equivalent to
using the correlation matrix.

Step 4) Compute a singular value decomposition [34] for the
matrix D2, as D2 = ULV′, where U is a column-
orthogonal matrix of same dimension as D2(na ·
no), L is a diagonal matrix (no · no), and V is an
orthogonal square matrix (no · no). The diagonal
elements of L (lk, k = 1 to no) are square roots of
the eigenvalues of the correlation matrix D′

2D2. The
columns of V are the corresponding eigenvectors
(PCs) of D′

2D2. Therefore, we can write for each
matrix element D2,ij

D2,ij =
no∑

k=1

lkUikVjk. (2)

Elements lk measure the amount of the variation
explained by each PC and will be largest for the
first PC and smaller for the subsequent PCs. Eigen-
vectors Vjk provide the weights to compute the
uncorrelated PCs, which are the linear combinations
of the standardized original variables.

Step 5) Find the number npc of SPCs using a given stopping
rule (we discuss these rules below). Then, we can ap-
proximate the matrix elements of D2 by npc PCs as

D̃2,ij(npc) ≈
npc∑
k=1

lkUikVjk. (3)

Step 6) Compute the approximation to the matrix elements
of the original matrix D0by reversing Steps 3) and 2)

D̃0,ij(npc) = Dτ=0,ij + D1,〈i〉j + σ1,〈i〉jD̃2,ij(npc). (4)

D. How to Choose the Number of SPCs?

The complete set of PCs contains the same information as the
raw data. However, the data are affected by noise. Therefore,
an important issue in doing a PCA is to choose the adequate
number of PCs to represent the system meaningfully, with the
rest of the PCs to be considered spurious. Because the nature
of the decision is rather arbitrary, there is no universal stopping
rule. However, a number of guidelines have been developed.
The following three simple rules are commonly used [35].

1) The Kaiser–Guttman rule is one of the most used stopping
rules [36], [37]. This approach accepts all PCs with
eigenvalues above the average eigenvalue, which is 1.0
for correlation-based PCA like ours, and rejects those
below the average (1.0). This is because any PC that
displays an eigenvalue above 1.0 is accounting for a
greater amount of variance than is contributed by one
variable; therefore, it is worthy of being retained. On
the other hand, a PC with an eigenvalue less than 1.0
is accounting for less variance than is contributed by
one variable, and therefore, it is insignificant. Note that
Tanré et al. [24] used this rule in their PCA.

2) Cumulative percent variance (CPV) [21] is a measure of
the percent variance captured by the first npc PCs. With
this rule, one selects a desired CPV, for example 90%.
While the target is to explain as much of the variance
as possible, one wants to retain as few PCs as possible.
Thus, the decision is a balance between the amount of
parsimony and comprehensiveness of the model.

3) The scree rule [38], [39] considers the eigenvalues as-
sociated with each PC against their rank order. Usually,
the magnitude of successive eigenvalues drops off sharply
and then tends to level off. The recommendation is to
retain all eigenvalues including the first one on the line
where they start to level off. Often the scree rule is
complicated by either the lack of any obvious break or
the possibility of multiple break points.

During the course of this paper, we experimented with all the
above rules. To choose the right rule, we first calculated three
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TABLE III
NUMBER OF SPCS: SPECTRAL DEPENDENCE. THE RESULTS HAVE BEEN DERIVED WITH THE CPV RULE WITH THE CRITICAL CPV = 90%. nθ IS THE

NUMBER OF VIEWING DIRECTIONS COVERING θout = 0◦ − 72◦. nλ IS THE NUMBER OF WAVELENGTH BANDS. λ REFLECTS THE RANGE OF THE

WAVELENGTHS. nI (nP ) IS THE NUMBER OF PCS FOR THE CASE OF NO POLARIZATION (LINEAR POLARIZATION: THREE STOKES COMPONENTS).
nPC IS THE NUMBER OF SPCS. ν = 6 m · s−1 (ν = 2−8 m · s−1) MARKS THE CASE WITH FIXED (VARIED) WIND SPEED. I (P ) MARKS THE

CASE OF NO (LINEAR) POLARIZATION. GL MARKS THE CASE WHEN ONE VIEWING DIRECTION IS IN GLINT: Φout = 0◦/180◦. OG
MARKS THE CASE WHEN ALL VIEWING DIRECTIONS ARE OFF GLINT: Φout = 48◦/132◦. THE SOLAR ZENITH ANGLE FOR ALL

THE CASES IS 48◦. A SUBSCRIPT AFTER THE NUMBER OF SPCS IS THE RELATIVE CONTRIBUTION TO THE VARIANCE

various versions of Table III, our principal table, by using each
of the rules. Then, we checked the entries of each table with the
following tests.

1) Uniqueness: solution should be clearly identifiable and be
unique.

2) Physical sense: the percentage of variance due to noise
provided with the solution should be consistent with the
expected uncertainty of the observed reflectance.

3) Informational sense: when a new channel is added, we
expect to have the number of SPCs greater than or equal
to that at the previous state.

The testing showed that rule 3) does not pass the uniqueness
test. It is hard to distinguish the solution because of the too
complex behavior of the eigenvalue plots, especially when we
analyze the polarization data, or simply because it is hard to
identify the transition point [like in Fig. 2(a)]. Rule 1) passes
tests 1) and 3), but failed in test 2) in about 40% of the table
entries, when it leads to the retention of too few SPCs, which
sometimes explain just 50%–60% of the variance with the rest
40%–50% would be due to noise. The latter numbers look too
large. Major contributors to the uncertainty of the observed
reflectance are the calibration error, which is typically 1%–4%,
and the underwater radiance error, which can be up to 5%.
Therefore, the total error of 5%–10% should be more realistic.

We found that rule 2), the CPV rule, with CPV of 90%–95%
passes all the tests. Thus, to be consistent with anticipated errors
of measurements, we performed the PCA for this paper with the
CPV 90% and 95% rule.

Note that we assumed the measurement error for the po-
larized components Q and U to be of similar level as for the
radiance I , while it can be smaller [13]. However, the CPV rule
we employed can only take the largest error that is the one for I
into account. Therefore, the number of SPCs we received for the
polarization cases (I + Q + U) should be considered as lower
estimates. We tried to work with more sophisticated stopping
rules, which explicitly take into account specific values of errors
for each piece of data and thus are able to provide more accurate
estimates for the number of SPCs than the CPV rule: the χ2

rule [40] and the eigenvalue uncertainty rule [41]. However,
while physically more justified, the rules failed to pass test 3):
They are unstable regarding the informational sense. Thus, we
decided not to use them at least in this paper.

III. RESULTS

We have carried out the PCA for various sets of aerosol-
related parameters such as particle size distribution and particle
optical constants (referred to below as aerosol model or model),
optical thickness of the aerosol layer τ , SSA of aerosol particles

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on September 24, 2009 at 13:12 from IEEE Xplore.  Restrictions apply. 



736 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 3, MARCH 2007

Fig. 2. Stopping rules for finding the number of SPCs. The results corre-
spond to the model when all aerosol parameters are varied, nλ = 8, nθ = 8,
Φout = 0◦/180◦, and no polarization. (a) Kaiser–Guttman rule. (b) CPV rule
for two values of the CPV: 90% and 95%.

ωo, height of the aerosol layer H , and wind speed ν. We
ran PCA by varying all or some of the parameters (with the
rest keep fixed). For example, we fixed the wind speed to
concentrate on the influence of the aerosol. Various observation
situations were simulated

1) The number of wavelength bands nλ was from one to
eight, covering the range 0.340–2.119 µm.

2) Solar zenith angle θin = 48◦ for this paper.
3) The number of view angles nθ was normally from one

to eight, while we did some special PCA runs for nθ up
to 122.

4) The observational plane was chosen to contain the di-
rection to the glint (azimuth angle Φout = 0◦/180◦) in
one case (principal plane) and to be out of glint (Φout =
48◦/132◦) in another.

5) The number of Stokes parameters ns was one (I: no
polarization) or three (I , Q, U : linear polarization).

Fig. 2 demonstrates how the stopping rules work on the
example of the model when all aerosol parameters are varied,
nλ = 8, nθ = 8, Φout = 0◦/180◦, and ns = 1 (no polariza-
tion). The Kaiser–Guttman rules, CPV 90% and 95%, provide
5, 9, and 12 SPCs, respectively.

A. Number of SPCs: Spectral, Angular, and
Polarization Information

Tables III and IV present the number of SPCs along with their
respective relative contribution to the variance for all above
observation situations when all aerosol parameters are varied.
Tables III and IV were derived with the CPV rule 90% and
95%, respectively. In this section, we analyze the results for

both cases, and in the next sections, we focus on the 90% case,
which looks closer to realistic observations. Note that columns
nI and nP in Tables III and IV contain the full number of
PCs for the cases of no and linear polarizations, with which
the resulting number of SPCs should be compared to estimate
the information reduction.

Consider first the gradual increase in observational capabil-
ities starting from the simplest case of one wavelength, one
view angle, and no polarization. By adding more wavelength
channels from one (0.533 µm) to eight (0.34–2.119 µm), we
receive two to three additional SPCs that represent 93%–98%
of the information. By adding more view angles from one to
eight (θout = 0◦−72◦), we obtain: 1) generally two to eight
more SPCs; 2) three to eight more SPCs when observations are
in the principal plane and two to five more SPCs when out of the
plane; thus, we have one to three extra SPCs due to glint; and
3) two to seven more SPCs for the case of the fixed wind speed
and two to eight more SPCs when the wind speed is varied; we
anticipate that one extra SPC is due to the wind speed. As we
will see below (Section III-C), the number of SPCs becomes
saturated when we increase the number of view angles nθ. By
adding linear polarization (Q and U Stokes parameters), we
receive: 1) one to seven further extra SPCs overall; 2) up to
seven extra SPCs when observations are in the principal plane
and up to six more SPCs when out of the plane; and 3) up
to one extra SPC from these amounts can be related to the
wind speed.

Now, we look at Tables III and IV from another view.
Consider increasing the number of wavelengths in one case and
the number of view angles in another case while allowing a
range of wavelengths, view angles, and polarization states.

By adding more wavelength channels from one (0.533 µm)
to eight (0.34–2.119 µm), we receive: 1) two to ten additional
SPCs overall that represent 91%–98% of the information;
2) two to seven more SPCs when no polarization and three to
ten more SPCs when linear polarization data are available; from
this, we have one to three extra SPCs due to the polarization
data; 3) two to ten more SPCs when observations are in the
principal plane and two to eight more SPCs when out of the
plane; thus, we have up to two extra SPCs from this amounts
due to glint; and 4) two to seven more SPCs for the case of
the fixed wind speed and two to ten more SPCs when the wind
speed is varied; we expect that up to three SPCs from two to ten
are associated with the wind speed.

By adding more view angles from one to eight (θout =
0◦−72◦), we obtain: 1) 2–12 additional SPCs overall; 2) two
to eight more SPCs when without polarization and two to ten
more SPCs when with linear polarization data; we have up to
four SPCs from these amounts due to the polarization data;
3) 3–12 more SPCs when observations are in the principal plane
and two to seven more SPCs when out of the plane; thus, we
have up to four extra SPCs due to glint; and 4) two to eight
more SPCs for the case of the fixed wind speed and 2–12 more
SPCs when the wind speed is varied; we anticipate that up to
four extra SPCs are due to the wind speed.

As expected, Tables III and IV show a tendency of increasing
the number of SPCs with an increase of any of the numbers: nλ,
nθ, or ns. The only exception from this rule is the transition
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TABLE IV
NUMBER OF SPCS: SPECTRAL DEPENDENCE. THE RESULTS HAVE BEEN DERIVED WITH THE CPV RULE WITH THE CRITICAL CPV = 95%. nθ IS

THE NUMBER OF VIEWING DIRECTIONS COVERING θout = 0◦−72◦. nλ IS THE NUMBER OF WAVELENGTH BANDS. λ REFLECTS THE RANGE OF

WAVELENGTHS. nI (nP ) IS THE NUMBER OF PCS FOR THE CASE OF NO POLARIZATION (LINEAR POLARIZATION: THREE STOKES

COMPONENTS). nPC IS THE NUMBER OF SPCS. ν = 6 m · s−1 (ν = 2−8 m · s−1) MARKS THE CASE WITH FIXED (VARIED)
WIND SPEED. I (P ) MARKS THE CASE OF NO (LINEAR) POLARIZATION. GL MARKS THE CASE WHEN ONE VIEWING

DIRECTION IS IN GLINT: Φout = 0◦/180◦. OG MARKS THE CASE WHEN ALL VIEWING DIRECTIONS ARE OFF

GLINT: Φout = 48◦/132◦. THE SOLAR ZENITH ANGLE FOR ALL THE CASES IS 48◦. A SUBSCRIPT AFTER

THE NUMBER OF SPCS IS THE RELATIVE CONTRIBUTION TO THE VARIANCE

from the four-wavelength case (0.411–0.855 µm) to the six-
wavelength (0.533–2.119 µm) when we observe occasional
drops in the number of SPCs. But, this is the only transition
when we not only add new channels (1.243–2.119 µm) but also
remove one channel (0.411 µm). Thus, the drop indicates that
the channel 0.411 µm contains more information than the three
infrared channels totally.

From Tables III and IV, we can get the following estimates
of SPCs for contemporary satellite instruments.

1) For the AVHRR with two submicrometer spectral chan-
nels and no polarization, we have two SPCs.

2) For the MODIS with single view direction and no polar-
ization for the 0.53–2.1-µm spectral range, the number of
SPCs is two to three.

3) For the MISR with seven view directions and no polariza-
tion for 0.53–0.86 µm, off glint, we receive three to five
SPCs.

4) For the POLDER with eight simulated view directions
with polarization for 0.53–0.86 µm, off glint, the number
of SPCs is five to eight.

5) For the APS with eight simulated view directions and
with polarization for 0.53–2.1 µm, we obtain six to nine
SPCs for the off-glint observations and 7–11 SPCs for

the observations in the principal plane. Note that, since
the actual number of view angles for APS is significantly
greater than eight (> 100), we expect a larger number of
SPCs in this case (see also Section III-C).

B. Number of SPCs: Information in Single Parameters

Table VII presents the number of significant SPCs for the
observation situations with one view angle (nθ = 1) when
any single aerosol parameter is fixed and the rest are varied.
Table VIII is the same as Table VII except for eight view angles
(nθ = 8). The following fixed values of the parameters were
used to produce the tables: H = 1–2 km, ωo = 0.95, τ = 0.2,
ν = 6 km · s−1, fine mode #2, and coarse mode #8. The results
for other fixed values do not differ essentially from those in
the tables.

By comparing the entry with a specific fixed parameter, with
the respective entry for the case when all parameters are varied
(line “All Models”), we can judge how many SPCs can be
associated with the fixed parameter. We define the difference
of the number of SPCs for a fixed-parameter pi and all-varied
(AM) models as: ∆nSPC(Pi) = nSPC(AM) − nSPC(Pi). Ac-
tually, ∆nSPC(pi) is the number of SPCs associated with the
fixed parameter pi. In order to get a deeper insight into the

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on September 24, 2009 at 13:12 from IEEE Xplore.  Restrictions apply. 



738 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 3, MARCH 2007

TABLE V
NUMBER OF SPCS ASSOCIATED WITH SINGLE PARAMETERS. CPV RULE

WITH THE CRITICAL CPV = 90%. nθ , THE NUMBER OF VIEW ANGLES, IS

EQUAL TO ONE FOR ALL THE CASES: θout = 0◦−72◦. nλ IS THE

NUMBER OF WAVELENGTH BANDS. λ REFLECTS THE RANGE OF

WAVELENGTHS. ν = 6 m · s−1 (ν = 2−8 m · s−1) MARKS THE

CASE WITH FIXED (VARIED) WIND SPEED. I (P ) MARKS

THE CASE OF NO (LINEAR) POLARIZATION. GL MARKS

THE CASE WHEN THE VIEWING DIRECTION IS IN

GLINT: Φout = 0◦/180◦. OG MARKS THE CASE

WHEN THE VIEWING DIRECTION IS OFF GLINT:
Φout = 48◦/132◦. THE SOLAR ZENITH ANGLE

FOR ALL THE CASES IS 48◦. THE RESULTS ARE

PRESENTED FOR THE FOLLOWING SINGLE VARIED

PARAMETERS: AEROSOL LAYER HEIGHT H , SSA OF

AEROSOL PARTICLES ωo, OPTICAL THICKNESS OF

AEROSOL LAYER τ , AEROSOL MODEL, AND WIND

SPEED ν. THE SUM OF THE NUMBER OF SPCS OVER

ALL THE SINGLE PARAMETERS FOR EACH COLUMN

IS DENOTED AS
∑

∆nSPC(Pi). THIS SHOULD BE

COMPARED WITH THE NUMBER OF SPCS FOR

THE CASE WHEN ALL SINGLE PARAMETERS

ARE VARIED: LINE “ALL MODELS”

problem, we compiled two more tables (Tables V and VI) which
contain the differences ∆nSPC(pi) for the cases of nθ = 1
and 8, respectively. The tables also contain lines with sums of
the differences over all fixed parameters

∑
i ∆nSPC(pi) and the

number of SPCs from the all-varied models to compare with.
When the sum of the differences is less than the total number

TABLE VI
NUMBER OF SPCS ASSOCIATED WITH SINGLE PARAMETERS. CPV RULE

WITH THE CRITICAL CPV = 90%. nθ , THE NUMBER OF VIEW ANGLES,
IS EQUAL TO EIGHT FOR ALL THE CASES: θout = 0◦−72◦. nλ IS THE

NUMBER OF WAVELENGTH BANDS. λ REFLECTS THE RANGE OF

WAVELENGTHS. ν = 6 m · s−1 (ν = 2−8 m · s−1) MARKS THE

CASE WITH FIXED (VARIED) WIND SPEED. I (P ) MARKS

THE CASE OF NO (LINEAR) POLARIZATION. GL MARKS THE

CASE WHEN THE VIEWING DIRECTION IS IN GLINT:
Φout = 0◦/180◦. OG MARKS THE CASE WHEN THE

VIEWING DIRECTION IS OFF GLINT: Φout = 48◦/132◦.
THE SOLAR ZENITH ANGLE FOR ALL THE CASES IS 48◦.

THE RESULTS ARE PRESENTED FOR THE FOLLOWING

SINGLE VARIED PARAMETERS: AEROSOL LAYER

HEIGHT H , SSA OF AEROSOL PARTICLES ωo,
OPTICAL THICKNESS OF AEROSOL LAYER τ ,
AEROSOL MODEL, AND WIND SPEED ν. THE

SUM OF THE NUMBER OF SPCS OVER ALL

THE SINGLE PARAMETERS FOR EACH COLUMN

IS DENOTED AS
∑

∆nSPC(pi). THIS SHOULD BE

COMPARED WITH THE NUMBER OF SPCS FOR

THE CASE WHEN ALL SINGLE PARAMETERS

ARE VARIED: LINE “ALL MODELS”

of SPCs, then some of the parameters cannot be retrieved
within the accuracy of the observations. On the other hand,
if the sum of the differences is greater than or equal to the
total number of SPCs, then there should be one or more SPCs
per parameter, or some of the SPCs can be shared between
different parameters, reflecting nonlinear relationships between
the parameters. However, even in such cases, the information
about some of the parameters, for which the difference of the
numbers is zero, may not still be retrieved.
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TABLE VII
NUMBER OF SPCS: INFORMATION IN SINGLE PARAMETERS. THE NUMBER OF PCS IS FIRST GIVEN TO A COMBINATION OF ALL AEROSOL MODELS,

THAN FOR A FIXED PARAMETER, ONE AT A TIME. nθ , THE NUMBER OF VIEWING DIRECTIONS, IS EQUAL TO ONE FOR ALL THE CASES:
θout = 0◦−72◦. nλ IS THE NUMBER OF WAVELENGTH BANDS. λ REFLECTS THE RANGE OF WAVELENGTHS. nI (nP ) IS THE

NUMBER OF PCS FOR THE CASE OF NO POLARIZATION (LINEAR POLARIZATION: THREE STOKES PARAMETERS). nPC IS THE

NUMBER OF SPCS. ν = 6 m · s−1 (ν = 2−8 m · s−1) MARKS THE CASE WITH FIXED (VARIED) WIND SPEED. I (P ) MARKS

THE CASE OF NO (LINEAR) POLARIZATION. GL MARKS THE CASE WHEN THE VIEWING DIRECTION IS IN GLINT:
Φout = 0◦/180◦. OG MARKS THE CASE WHEN THE VIEWING DIRECTION IS OFF GLINT: Φout = 48◦/132◦.

THE SOLAR ZENITH ANGLE FOR ALL THE CASES IS 48◦. A SUBSCRIPT AFTER A NUMBER OF SPCS IS

THE RELATIVE CONTRIBUTION TO THE VARIANCE

We can see the following general tendencies in Tables V
and VI: 1) Most SPCs per parameter (up to three for one view
angle and up to six for eight view angles) are due to aerosol
model, with smaller amounts due to τ (up to two and four),
ωo (up to two and three), and H (up to one and two); 2) for
the case of eight view angles, more SPCs per parameter (up
to two extra) come from the in-glint observations compared
with the out-of-glint observations, whereas for the case of one
view angle, we observe the inverse situation: the out-of-glint
observations sometimes can provide one to two extra SPCs per
parameter; 3) one stable SPC, due to the wind speed, can be
derived from the eight-angle observations, whereas no wind
speed information is in the one-angle observations; and 4) linear
polarization observations can provide up to two extra SPCs per

parameter and no matter in-glint or out-of-glint and one-angle
or eight-angle observations.

Table IX presents another view on the number of SPCs
in single parameters, for the case of seven wavelengths and
eight viewing directions. We started from the case when all
parameters are varied: this is the top of the pyramid. Then, we
ran the PCA for the fine and coarse modes separately. Then,
for each mode, we did the PCA for a single aerosol model
(#2 fine and #8 coarse). After this step, we consecutively fixed
the parameters until just one parameter is allowed to vary: the
results at this final step form the pyramid base. By comparing
the number of SPCs between the two consecutive steps, we
can estimate the number of SPCs associated with the fixed
parameter.

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on September 24, 2009 at 13:12 from IEEE Xplore.  Restrictions apply. 



740 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 3, MARCH 2007

TABLE VIII
NUMBER OF SPCS: INFORMATION IN SINGLE PARAMETERS. THE NUMBER OF PCS IS FIRST GIVEN TO A COMBINATION OF ALL AEROSOL MODELS,

THAN FOR A FIXED PARAMETER, ONE AT A TIME. nθ , THE NUMBER OF VIEWING DIRECTIONS, IS EQUAL TO EIGHT FOR ALL THE CASES:
θout = 0◦−72◦. nλ IS THE NUMBER OF WAVELENGTH BANDS. λ REFLECTS THE RANGE OF WAVELENGTHS. nI (nP ) IS THE NUMBER

OF PCS FOR THE CASE OF NO POLARIZATION (LINEAR POLARIZATION: THREE STOKES PARAMETERS). nPC IS THE NUMBER OF SPCS.
ν = 6 m · s−1 (ν = 2−8 m · s−1) MARKS THE CASE WITH FIXED (VARIED) WIND SPEED. I (P ) MARKS THE CASE OF NO (LINEAR)

POLARIZATION. GL MARKS THE CASE WHEN ONE VIEWING DIRECTION IS IN GLINT: Φout = 0◦/180◦. OG MARKS THE CASE

WHEN ALL VIEWING DIRECTIONS ARE OFF GLINT: Φout = 48◦/132◦. THE SOLAR ZENITH ANGLE FOR ALL THE CASES IS 48◦.
A SUBSCRIPT AFTER A NUMBER OF SPCS IS THE RELATIVE CONTRIBUTION TO THE VARIANCE

After analyzing the results reported in Tables V–IX, we
can conclude that, generally, observations are most sensitive
to aerosol model, followed in decreasing order by τ , ωo, and
H . The sensitivity to the wind speed ν depends on the number
of view angles. Because each of the aerosol models used by
us already incorporates specific values of the size distribution
parameters and refractive index, it is impossible to further
estimate how many SPCs from those associated with the aerosol
model can be related with the size distribution parameters and
with the refractive index. Thus, for example, the impact of
the refractive index cannot be estimated here. To achieve it,
a PCA should be done with both the refractive index and
the size distribution parameters as directly varied parameters.
Note that Mishchenko and Travis [18]–[20] performed the

sensitivity study by varying both the refractive index and the
size distribution for single-wavelength measurements.

C. Number of SPCs Versus the Position of the
Observational Plane

Figs. 3 and 4 display the plots of the number of SPCs as a
function of the number of view angles and the azimuth angle
of the observational plane. The results are presented for three
sets of wavelength bands (nλ = 4, 7, and, 8), for observations
without and with linear polarizations and for the cases when
the wind speed is varied and fixed.

The figures demonstrate that there is a saturation ef-
fect when we increase the number of view angles nθ: no
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TABLE IX
NUMBER OF SPCS: VARIED AND FIXED PARAMETERS, SEVEN WAVELENGTHS, AND EIGHT VIEWING DIRECTIONS. THE SOLAR ZENITH ANGLE FOR ALL

THE CASES IS 48◦, AND THE NUMBER OF VIEWING DIRECTIONS nθ IS EIGHT. THE LEFT NUMBER CORRESPONDS TO THE CASE WHEN THE VIEWING

DIRECTIONS LIE IN THE PRINCIPAL PLANE: θout = 0◦−72◦ AND Φout = 0◦/180◦, THUS CONTAINING THE DIRECTION TO THE GLINT CENTER.
THE RIGHT NUMBER CORRESPONDS TO THE VIEWING DIRECTIONS IN ANOTHER PLANE LOCATED OUT OF THE GLINT: θout = 0◦−72◦

AND Φout = 48◦/132◦. VARIED AND FIXED PARAMETERS ARE AEROSOL MODEL, WIND SPEED (MARKED AS W), AEROSOL LAYER

HEIGHT (H), AEROSOL SSA (A), AND AOT (T). FIXED PARAMETERS ARE SUBSCRIPTED e.g., (WHAT). THE CASES WHEN

THE PROGRAM FAILED TO FIND THE PCS ARE MARKED BY “-”

significant change in the number of SPCs for nθ ≥ 10−15
when no polarization and for nθ ≥ 30 with linear polarization
data. The saturation appears because we increase the num-
ber of view angles θout, but keep them in the range 1.5◦ ≤
θout ≤ 72◦. Thus, starting from some point, no new information
is added.

Depending on the position of the observational plane, we
can get from two to ten SPCs without polarization and from

4 to 16 SPCs with linear polarization data. Up to two SPCs
should be due to the wind speed. Observations with seven and
eight wavelength bands can provide one to three more SPCs
compared with the case of four bands.

When moving the observation plane from Φout = 0◦/180◦ to
90◦/90◦, there is a general drop in the number of SPCs, which
reflects a drop in the information content due to narrowing
the range of scattering angles from 0◦−120◦ to 48◦−78◦.
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Fig. 3. Number of SPCs as a function of the number of viewing directions for θin = 48◦, θout = 1.5◦−72◦, and Φout = 0◦/180◦−90◦/90◦, and with the
wind speed varied in the range of 2–8 m · s−1 for (a) four wavelength bands (0.411–0.855 µm) and no polarization, (b) four wavelength bands (0.411–0.855 µm)
and with linear polarization, (c) seven wavelength bands (0.411–2.119 µm) and no polarization, (d) seven wavelength bands (0.411–2.119 µm) and with linear
polarization, (e) eight wavelength bands (0.340–2.119 µm) and no polarization, and (f) eight wavelength bands (0.340–2.119 µm) and with linear polarization.

However, the process does not go smoothly. For example,
the case of Φout=15◦/165◦ appears to be sometimes better
than Φout=0◦/180◦, especially for polarization observations.
We think that this is because the finer angular spacing of θout

with the same number of scattering angles covering a smaller
range of scattering angles sometimes can be better than a
somewhat coarser angular spacing covering a wider range.

IV. CONCLUSION

In this paper, we presented the results of the PCA of simu-
lated satellite observations of aerosol over oceans. We modeled
various possible observation situations when a satellite sensor
can perform multispectral, multiangle, and polarization mea-
surements of the reflected solar radiances. With the PCA, we
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Fig. 4. Number of SPCs as a function of the number of viewing directions for θin = 48◦, θout = 1.5◦−72◦, and Φout = 0◦/180◦−90◦/90◦, and with the
wind speed fixed to 6 m · s−1 for (a) four wavelength bands (0.411–0.855 µm) and no polarization, (b) four wavelength bands (0.411–0.855 µm) and with linear
polarization, (c) seven wavelength bands (0.411–2.119 µm) and no polarization, (d) seven wavelength bands (0.411–2.119 µm) and with linear polarization,
(e) eight wavelength bands (0.340–2.119 µm) and no polarization, and (f) eight wavelength bands (0.340–2.119 µm) and with linear polarization.

analyzed the sensitivity of the information contained in the
radiances to the following parameters: 1) AOT; 2) SSA of
aerosol particles; 3) height of the aerosol layer; 4) aerosol
model, which includes the size distribution parameters and
optical constants; and (5) wind speed over ocean. To choose
the number of SPCs, we used the CPV rule with the critical

percentage of 90%, which satisfies all our criteria for the
solution: uniqueness, physical sense, and informational sense.

Note, however, that a larger number of eigenvalues that meet
the stopping rule does not necessarily mean more information
about aerosols. For example, having glint or higher wind speed,
or larger field-of-view of the instrument creates greater scene
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variance, but not necessarily more information about aerosols,
due to the additional information needed to describe the surface.

The principal results of this paper can be summarized as
follows.

1) By making observations at one to eight wavelengths
across the solar spectrum and one to eight view angles,
we can obtain totally up to nine SPCs (no polarization)
and up to 12 SPCs (with linear polarization channels),
which represent 91%–98% of the information.

2) By adding more wavelength channels from one
(0.533 µm) to eight (0.34–2.119 µm), we can receive two
to ten extra SPCs overall, one to three extra SPCs due to
the linear polarization data comparing with the case of
no polarization, up to two extra SPCs due to glint when
observations are done in the principal plane, and up to
three SPCs relating to the wind speed.

3) By adding more view angles from one to eight (θout =
0◦−72◦), we can get 2–12 extra SPCs overall, up to four
extra SPCs due to the linear polarization channels, up to
four extra SPCs due to observations in glint compared
with the off-glint observations, and up to four SPCs
associated with the wind speed.

4) By adding linear polarization channels, we can get addi-
tional one to seven SPCs overall, with one SPC due to the
wind speed.

5) Our PCA analysis shows that the observations should be
most sensitive to aerosol model (size distribution and op-
tical parameters), followed in decreasing order by optical
thickness τ , SSA ωo, and aerosol layer height H . The
sensitivity to the wind speed ν depends on the number
of view angles.

6) We have studied the behavior of the number of SPCs as
a function of the position of the observational plane Φout

and the number of view angles nθ. We have found that,
with increasing nθ, there is no systematic increase in the
number of SPCs for nθ ≥ 10−15, when no polarization,
and for nθ ≥ 30 with linear polarization data. By using
a quite large nθ, we can get from two to ten SPCs
without polarization and from 4 to 16 SPCs with linear
polarization data. Up to two SPCs should be due to the
wind speed.

7) The results of this paper are generally consistent with
those of previous PCA study by Tanré et al. [24].
For the MODIS-like case with seven wavelength bands
0.411–2.119 µm, one view angle, and no polarization, we
received two (for CPV 90% which seems more realistic)
or three (for CPV 95%) SPCs, whereas Tanré et al.
obtained up to two SPCs. Note however that the work
[24] used more simplistic assumptions. For example, they
modeled radiative transfer through aerosol in the single-
scattering approximation.

8) The methodology and results of our PCA can be useful in
estimating the reliability of aerosol parameters retrieved
from existing and future satellite observations.
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